A Comparison of Supervised Learning Algorithms for Telerobotic Control Using Electromyography Signals

نویسندگان

  • Tyler M. Frasca
  • Antonio G. Sestito
  • Craig Versek
  • Douglas E. Dow
  • Barry C. Husowitz
  • Nate Derbinsky
چکیده

Human Computer Interaction (HCI) is central for many applications, including hazardous environment inspection and telemedicine. Whereas traditional methods of HCI for teleoperating electromechanical systems include joysticks, levers, or buttons, our research focuses on using electromyography (EMG) signals to improve intuition and response time. An important challenge is to accurately and efficiently extract and map EMG signals to known position for real-time control. In this preliminary work, we compare the accuracy and real-time performance of several machine-learning techniques for recognizing specific arm positions. We present results from offline analysis, as well as end-to-end operation using a robotic arm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Method for Speech Enhancement Based on Incoherent Model Learning in Wavelet Transform Domain

Quality of speech signal significantly reduces in the presence of environmental noise signals and leads to the imperfect performance of hearing aid devices, automatic speech recognition systems, and mobile phones. In this paper, the single channel speech enhancement of the corrupted signals by the additive noise signals is considered. A dictionary-based algorithm is proposed to train the speech...

متن کامل

مقایسه روش‌های مختلف یادگیری ماشین در خلاصه‌سازی استخراجی گفتار به گفتار فارسی بدون استفاده از رونوشت

In this paper, extractive speech summarization using different machine learning algorithms was investigated. The task of Speech summarization deals with extracting important and salient segments from speech in order to access, search, extract and browse speech files easier and in a less costly manner. In this paper, a new method for speech summarization without using automatic speech recognitio...

متن کامل

INTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES

The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...

متن کامل

Design and Performance Analysis of Artificial Neural Network for Hand Motion Detection from EMG Signals

Submitted: Jan 9, 2013; Accepted: Feb 17, 2013; Published: Jul 27, 2013 Abstract: Besides prosthetic device control and neuromuscular disease identification, electromyography (EMG) signals can also be applied in the field of human computer interaction (HCI) system. This article represents the classification of Electromygraphy (EMG) signal for the detection of different predefined hand motions (...

متن کامل

Combining pattern recognition and deep-learning-based algorithms to automatically detect commercial quadcopters using audio signals (Research Article)

Commercial quadcopters with many private, commercial, and public sector applications are a rapidly advancing technology. Currently, there is no guarantee to facilitate the safe operation of these devices in the community. Three different automatic commercial quadcopters identification methods are presented in this paper. Among these three techniques, two are based on deep neural networks in whi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016